
OscAlgoPi
Project: OscAlgoPi
Author: Staffan Melin, staffan.melin@oscillator.se
License: GNU General Public License v3.0
Version: 2.0 (20200831)
Project site: http://www.oscillator.se/opensource

Introduction
You plug a small box into a pair of speakers and it plays music forever. Music that changes and
evolves.

That is the goal of this project: To play algorithmic music using the Raspberry Pi with good quality
audio that you can connect to your stereo amplifier (or active speakers or headphones). The system
is controlled using a web interface, so you can use any device connected to your Wi-Fi as a
controller (computer or smartphone) and select different styles, tempo and degree of change.

This guide assumes you know how to operate a command prompt and use some basic text
commands.

This project uses these great additional components:

• General User soundfont from Christian Collins (http://schristiancollins.com/generaluser.php)

• RtMidi API (http://www.music.mcgill.ca/~gary/rtmidi/index.html)

• TinyXML2 (https://github.com/leethomason/tinyxml2)

Thank you all!

This system has been developed on a Core i5 laptop running GNU/Linux Debian
10 Buster and a Raspberry Pi 4 with 4GB RAM. I used the Code::Blocks IDE to
develop the C++ software.

http://schristiancollins.com/generaluser.php
https://github.com/leethomason/tinyxml2
http://www.music.mcgill.ca/~gary/rtmidi/index.html

Table of Contents
Introduction..1
How to use it...3

2. Connect to the Raspberry Pi..3
3. Start the Engine..5
4. Select a style..5
5. Change the degree of change (permutation)..5
6. Change the tempo..5
7. Shut down the Raspberry Pi...5

How to build it..6
Equipment..7
Prepare the Raspberry Pi..7

Install Raspberry Pi OS...7
Enable SSH...7
Enable WIFI..7
Boot the Raspberry Pi...7

Configure the Raspberry Pi..8
SSH communication...8
Additional settings..8

Prepare files...8
Install Fluidsynth, RtMidi and TinyXML2..9
Compile and build the C++ code...9

Building oap - the engine..9
Building oapsignal - the signaller...10

Install the web server...10
Copy programs and files and fix the communication..11
Set up Fluidsynth...12
Test...13

Appendix. About the code..14
Appendix. Styles...15
Appendix. Fluidsynth configuration...20
Appendix. General Midi drums..21
Appendix. GeneralUser patches...22

How to use it
1. Power up your Raspberry Pi and let it boot (it should take less than a minute).

2. With another device (smartphone, laptop) connected to the same wifi, start a browser and visit the
homepage on the Raspberry Pi.

3. Start the Engine.

4. Select a style

5. Change the degree of change (permutation).

6. Change the tempo

7. Shut down the Raspberry Pi

The following is a more detailed description.

2. Connect to the Raspberry Pi
To connect you will have to lookup the ip (eg 192.168.1.85) of the Raspberry Pi.

As I run GNU/Linux, I used the command

nmap -sL 192.168.1.0/24

in a terminal to list all connected devices.

It will show a line something like this

Nmap scan report for raspberrypi.lan (192.168.1.85)

which means that your Raspberry Pi is connected to the ip 192.168.1.85.

My wifi router always seem to assign the same ip to my Raspberry Pi, so I don't have to look it up
every time.

If you have an Android phone you can use Network Discovery (on F-Droid) or
for example Network Scanner (on Play Store).

Type this ip number into your browser and you will see the OscAlgoPi homepage:

3. Start the Engine
Click on "Start Engine" to start the system. The OscAlgoPi is ready to play some music.

4. Select a style
Click on the style buttons to select what kind of music the system is playing.

The OscAlgoPi comes with two pre-defined styles that are hard-coded into the system: EP
(ElectroPop) and DR (DRone).

In addition you can download and install new styles that are defined in XML text files:

1. Download an OscAlgoPi style file to the device you are running the web browser on.

2. Click "Style: Upload", select the file and upload the file.

Click "Style: Delete" to remove installed styles.

For more information on styles and how to create your own see "Appendix. Styles".

5. Change the degree of change (permutation).
Click on the permutation buttons to change how much the system changes the music (larger values
= more changes). Music can be changed in the following ways, where the changes are applied to the
whole or only some notes of the sequence of a track.

• SWAP: Note pitches are shuffled.

• RHYTHM: Pitches are kept but their lengths are shuffled.

• SIMPLIFY: Some notes are changed into rests (ie removed).

• ADD: Some notes are added, the pitches for these are taken from already existing notes.

• SHIFT: Notes are shifted left or right.

• TRANSPOSE: Notes are shifted up och down in pitch, where the pitch "steps" are taken
from already existing notes.

• ORIGINAL: The notes are restored to their original values.

6. Change the tempo
Click on the tempo buttons to change the tempo of the music. Tempo changes are applied after the
sequence has finished playing. For styles where the tracks are synchronized (for example Style: EP)
tempo changes become active when all currently playing sequences (parts of music) have finished.
This is to keep all tracks synchronized.

7. Shut down the Raspberry Pi
Click on "Shut down" and wait half a minute to shut down your Raspberry Pi before you disconnect
it from power.

How to build it
This is an overview of what we are going to do.

The sound is generated by the Fluidsynth softsynth using a soundfont (.sf2). Fluidsynth outputs the
audio to the Raspberry Pi hardware using ALSA, the Linux sound system.

Our program is divided into three parts.

The main engine, oap, that controls the softsynth using MIDI transmitted using the RtMidi library.

The website, running on a webserver on the Raspberry Pi, that controls the system.

The "glue" between the site and the engine, oapsignal, that lets the site communicate with the
engine using signals.

Equipment
• a computer running GNU/Linux (you can also use a computer with another OS but then my

instructions can't be followed exactly)

• Raspberry Pi (project tested on a Raspberry Pi 4)

• power adapter for the Raspberry Pi

• SD-card and a card reader

• local network (wifi router) and a wifi connection

• headphones or an amplifier

Prepare the Raspberry Pi
As we are not going to connect the Raspberry Pi to a monitor, keyboard and mouse, the desktop
software is not necessary. We are going to run our RPI headless.

Install Raspberry Pi OS

Download Raspberry PI OS Lite and install it:

• https://www.raspberrypi.org/downloads/raspberry-pi-os/

• https://www.raspberrypi.org/documentation/installation/installing-images/README.md

Enable SSH

While you have the SD-card still inserted in the computer, create a file named

ssh

on the boot partition to enable SSH.

Enable WIFI

You must also make sure that the Raspberry Pi is connected to your lan/network.

For WIFI to work you must create a file on the boot partition named

wpa_supplicant.conf

and fill it with:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=<Insert 2 letter ISO 3166-1 country code here>

network={
 ssid="<Name of your wireless LAN>"
 psk="<Password for your wireless LAN>"
}

Boot the Raspberry Pi

Unmount the sdcard. Insert it into your Raspberry Pi and connect it to power.

Useful links:

• https://www.raspberrypi.org/documentation/configuration/wireless/headless.md

• https://www.raspberrypi.org/documentation/remote-access/ssh/README.md

Configure the Raspberry Pi

SSH communication

You communicate with the headless Raspberry Pi using SSH.

As I run GNU/Linux, I use the command

nmap -sL 192.168.1.0/24

in a terminal to list all connected devices.

It will show a line something like this

Nmap scan report for raspberrypi.lan (192.168.1.85)

which means that your Raspberry Pi is connected to the ip 192.168.1.85.

If you have an Android phone you can use Network Discovery (on F-Droid) or
for example Network Scanner (on Play Store).

Start a terminal window on your computer (not your Raspberry Pi) and enter:

ssh pi@192.168.1.85

Login with your password (the user is usually "pi"). Per default the password is "raspberry".

Additional settings

The password can be changed by;

sudo raspi-config

You can also use raspi-config to:

• Expand the file system to fill the SD card: 7 Advanced Options > A1 Expand Filesystem

• Force the audio output to the audio jack instead of the monitor: 7 Advanced Options > A4
Audio

You should also make sure your Raspberry Pi is updated:

sudo apt-get update
sudo apt-get upgrade

Now reboot your Raspberry Pi:

sudo reboot

Now we have a Raspberry Pi running Raspbian, connected to your Wi-Fi, and accessible using
SSH.

Prepare files
We are going to put the project files in

cd /home/pi

Download the project files:

wget
https://oscillator.se/sites/default/files/opensource/oscalgopi/oscalgopi.zip

Unpack them

unzip oscalgopi.zip

You will now have a directory structure looking like this

/home
/pi

/oscalgopi
/code_oap
/code_oapsignal
/code_web
/doc
/rtmidi
/styles
/tinyxml2
fluidconfig.txt
generaluser.sf2
generaluser_license.txt
runfluid.sh

Install Fluidsynth, RtMidi and TinyXML2
All sound generation is done by Fluidsynth so we have to install it:

sudo apt-get install fluidsynth

Fluidsynth is also called ROMpler, ie it plays small samples of sounds (and modifies them in the
process). They are stored in a format called .sf2, soundfonts.

OscAlgoPi works with a special soundfont called General User made by Christian Collins. The
sounds are very well made in general, of small size, and are mostly mono sounds, which means we
can pan them any way we like. The General User soundfont is included in the downloaded project.

We also need the RtMidi C++ MIDI library and the TinyXml2 library. They are both included in the
download.

Useful links to these excellent resources:

• http://schristiancollins.com/generaluser.php:

• http://www.music.mcgill.ca/~gary/rtmidi/index.html

• https://github.com/leethomason/tinyxml2

Compile and build the C++ code
Now we have to build the two C++ programs used by OscAlgoPi.

First we have to install a package that is used for the ALSA sound system:

sudo apt-get install libasound2-dev

Building oap - the engine

Enter the directory where the code is located:

cd /home/pi/oscalgopi/code_oap

Next run the 9 compilations:

g++ -Wall -D__LINUX_ALSA__ -g -c /home/pi/oscalgopi/rtmidi/RtMidi.cpp -o
obj/RtMidi.o
g++ -Wall -D__LINUX_ALSA__ -g -c /home/pi/oscalgopi/tinyxml2/tinyxml2.cpp -
o obj/tinyxml2.o
g++ -Wall -D__LINUX_ALSA__ -g -c /home/pi/oscalgopi/code_oap/main.cpp -o
obj/main.o
g++ -Wall -D__LINUX_ALSA__ -g -c /home/pi/oscalgopi/code_oap/midi.cpp -o
obj/midi.o
g++ -Wall -D__LINUX_ALSA__ -g -c /home/pi/oscalgopi/code_oap/style_dr.cpp -
o obj/style_dr.o
g++ -Wall -D__LINUX_ALSA__ -g -c /home/pi/oscalgopi/code_oap/style_ep.cpp -
o obj/style_ep.o
g++ -Wall -D__LINUX_ALSA__ -g -c /home/pi/oscalgopi/code_oap/style_xml.cpp
-o obj/style_xml.o
g++ -Wall -D__LINUX_ALSA__ -g -c /home/pi/oscalgopi/code_oap/track.cpp -o
obj/track.o
g++ -Wall -D__LINUX_ALSA__ -g -c /home/pi/oscalgopi/code_oap/util.cpp -o
obj/util.o

And link them together to create our OscAlgoPi engine program:

g++ -o oap obj/RtMidi.o obj/tinyxml2.o obj/main.o obj/midi.o obj/style_dr.o
obj/style_ep.o obj/style_xml.o obj/track.o obj/util.o -lasound -lpthread

Building oapsignal - the signaller

Enter the directory where the code is located:

cd /home/pi/oscalgopi/code_oapsignal

Next run the compilation:

g++ -Wall -fexceptions -O2 -c /home/pi/oscalgopi/code_oapsignal/main.cpp -o
obj/main.o

And link it to create our OscAlgoPi signal program:

g++ -o oapsignal obj/main.o -s

Install the web server
Our user interface will be provided by a web server on the Raspberry Pi. The web server we will
use is called Apache. Install it using the following commands:

sudo apt install apache2

Enter these commands to set up the directories:

sudo mkdir /var/www/html/styles
sudo chown -R pi:www-data /var/www/html/
sudo chmod -R 770 /var/www/html/

You also need to install PHP, the language our user interface is written in, as well as some
additional components:

sudo apt install php php-mbstring php-xml

You don't need to install a database engine.

If you want to you can test that your web server is up and running by
opening a web reader on another computer on the same lan/network and enter
the ip of the Raspberry Pi. You should get the "Apache2 Debian Default
Page".

As the web interface should be able to shut down the Raspberry Pi, you have to add the following
line

www-data ALL=(ALL) NOPASSWD: /sbin/shutdown

to the file /etc/sudoers using the command

sudo nano /etc/sudoers

which launches a simple text editor. Insert the line after the line that begins with "%sudo", press
CTRL+O to save and CTRL+X to exit.

Useful links:

• https://raspberrypi.stackexchange.com/questions/26357/shutting-down-raspberry-pi-with-
php

• https://linuxize.com/post/how-to-install-apache-on-debian-10/

Copy programs and files and fix the communication
Remove the default home page

sudo rm /var/www/html/index.html

and copy the new one

sudo cp /home/pi/oscalgopi/code_web/*.php /var/www/html

Now copy the two compiled C++ program files so the web server can access them

sudo cp /home/pi/oscalgopi/code_oap/oap /var/www/html
sudo cp /home/pi/oscalgopi/code_oapsignal/oapsignal /var/www/html

To enable the different components to speak to one another we have to setup some things.

First we have to tell the web server (Apache 2) that it should use the same file system for temporary
files as our programs. Edit this file:

sudo nano /lib/systemd/system/apache2.service

and set PrivateTmp to false.

We also have to check that the web server is prepared to accept file uploads:

Check where the PHP server is storing its settings (the location of php.ini):

php --ini

On my installation it is

/etc/php/7.3/cli/php.ini

Check that this setting is

file_uploads = On

Reload and restart apache:

sudo systemctl daemon-reload
sudo systemctl restart apache2.service

The program oapsignal has to know which process id (pid) the main engine oap has. So oap writes
this in a file. Without the change to PrivateTmp they will no be able to see this.

To set the right permissions you should create the file

sudo touch /var/tmp/oapsignal.txt

and set write permission for all

sudo chmod a+w /var/tmp/oapsignal.txt

This file contains two things on line 1 and 2: the id of the main process (a number) and the name of
the XML style than is chosen by the web interface.

Open the file using for example the nano file editor

nano /var/tmp/oapsignal.txt

and enter the following default information:

0
simple

Copy the example styles so the web server will be able to access them:

sudo cp /home/pi/oscalgopi/styles/*.xml /var/www/html/styles

The program oapsignal uses signals to talk to the engine, oap. We have to give oapsignal permission
to send these signals:

sudo setcap cap_kill+eip /var/www/html/oapsignal

I am not sure if this next step is necessary, but we will do it anyway! :)

sudo usermod -a -G audio www-data

Now is a good time to reboot the Raspberry Pi.

sudo reboot

Set up Fluidsynth
Fluidsynth has to be started for the oap engine to work.

It is started by a script

/home/pi/oscalgopi/runfluid.sh

which uses

/home/pi/oscalgopi/fluidconfig.txt

to set up Fluidsynth.

We have to make this script run at Raspberry Pi startup.

First we make it executable (able to run):

chmod a+x /home/pi/oscalgopi/runfluid.sh

Then we edit the startup file to make the script run on startup:

sudo nano /etc/rc.local

and add the following line before the "exit 0":

sudo /home/pi/oscalgopi/runfluid.sh & > /home/pi/oscalgopi/log.txt 2>&1

Now is a good time to reboot!

sudo reboot

Useful links:

• https://www.dexterindustries.com/howto/run-a-program-on-your-raspberry-pi-at-startup/

• https://lucidbeaming.com/blog/running-fluidsynth-on-a-raspberry-pi-zero-w/

• https://raspberrypi.stackexchange.com/questions/8734/execute-script-on-start-up

Test
To test your Raspberry Pi, follow the "How to use it" section above.

Adjust the volume:

alsamixer

Appendix. About the code
I have modelled much of the system on my previous Arduino programming, with setup() and loop().
The web server talks to the oap program using the helper program oapsignal, which sends Linux
signals to oap.

The main loop is in main() in the main.cpp.

The setup() and loop() functions select the right functions with a simple select statement:

void setup(OscTime aTime)
{

switch (gStyle) {
case STYLE_EP:

ep_setup(aTime);
break;

case STYLE_DR:
dr_setup(aTime);
break;

case STYLE_XML:
xml_setup(aTime);
break;

}
gTempoNew = gTempo;

}

void loop(OscTime aTime)
{

switch (gStyle) {
case STYLE_EP:

ep_loop(aTime);
break;

case STYLE_DR:
dr_loop(aTime);
break;

case STYLE_XML:
xml_loop(aTime);
break;

}
}

 The *_setup() and *_loop() functions are defined in their own C++ files.

Appendix. Styles
The styles are defined in the style/*.xml files. The two exceptions are the Style EP (Electro Pop)
and Style DR (Drone) styles that are hardcoded.

To make you own style you have to create a style XML and upload it. This section describes the
format of these files.

Styles are made up of Tracks - think of them as a sound, for example piano.

Each Track can have one or more patterns, consisting of one or more notes and rests.

Styles also contain information on how to move from one pattern to another.

This transition works in one of two ways. This is defined at the start of the style file.

• Synced: When the patterns have finished, all tracks shift to new patterns (or all stay on the
same pattern). This means that all patterns with the same number have to be of the same
length.

• Free: When the pattern of a track has finished, only this track shifts to a new pattern. The
tracks are not synchronized. This can be useful for drone music, where you can make
patterns of different length for different tracks so the music doesn't repeat (as often).

If you want a rest, MIDI note number should be 0.

Note length is given as

• 1 = 1 (whole)

• 2 = 1/2 (half)

• 4 = 1/4 (quarter)

• 8 = 1/8 (eight)

• 16 = 1/16

• 32 = 1/32

• 64 = 1/64

• 128 = 1/128

• 256 = 1/256

You can also add a multiplier, eg 2*3 (1/2 * 3).

Here the style format is explained using the two demo files. Comments are colored.

First is an example of a Synced style.

<style>
<name>SimpleSync</name> Name displayed in web interface
<synced>1</synced> Are tracks synchronized to each other (1) or not

(0)
<tempo>2</tempo> Note lengths are multiplied by this factor (so 2 is

half tempo of base tempo that is 120 bpm)
<tracks>2</tracks> Number of tracks in this style (max: 50)

<sequences>2</sequences> Number of sequences defined later on

<track> First track, number 0
<number>0</number>
<channel>5</channel> Which MIDI channel to play this on (0-15)
<type>4</type> Indicates what kind of changes/permutation are

allowed on this track 1 (STABLE) Allowed permutations: None; 2 (DRUM)
Allowed permutations: RHYTHM, SIMPLIFY, ADD, ORIGINAL; 3 (RHYTHM) Allowed
permutations: None; 4 (PITCH) Allowed permutations: SWAP, RHYTHM, SHIFT,
TRANSPOSE, SIMPLIFY, ADD, ORIGINAL.

<program>49</program> Program number of GeneralUser patch
<bank>0</bank> Bank number of GeneralUser patch
<volume>100</volume> Volume of track (0-127)
<pan>30</pan> Pan of track (0-127, L: 0, C: 64, R: 127)
<reverb>60</reverb> Reverb level (0-127)
<chorus>20</chorus> Chorus level (0-127)
<velocity>100</velocity> MIDI velocity of notes of track
<patterncount>2</patterncount> Number of patterns
<pattern number="0"> Start of pattern 0 (as this is a synced

track it must have the same length as all other pattern 0 on all tracks)
<note>36,4</note> MIDI number number, note length
<note>41,4</note>
<note>43,4</note>
<note>41,4</note>
<note>36,4</note>
<note>41,4</note>
<note>43,4</note>
<note>41,4</note>

</pattern>
<pattern number="1"> Start of pattern 1

<note>48,4</note>
<note>41,4</note>
<note>43,4</note>
<note>48,4</note>
<note>43,4</note>
<note>41,4</note>
<note>43,4</note>
<note>41,4</note>

</pattern>
</track>

<track>
<number>1</number>
<channel>6</channel>
<type>4</type>
<program>97</program>
<bank>0</bank>
<volume>100</volume>
<pan>95</pan>
<reverb>100</reverb>
<chorus>40</chorus>
<velocity>100</velocity>
<patterncount>2</patterncount>
<pattern number="0">

<note>60,2</note>
<note>62,2</note>
<note>65,2</note>
<note>62,2</note>

</pattern>
<pattern number="1">

<note>55,2</note>
<note>57,2</note>
<note>60,2</note>
<note>57,2</note>

</pattern>

</track>

From here, the info given is special to Synced styles.
First we connect patterns into sequences to describe how they fit together.

<!--For this sequence, which patterns are active on each track -->
<sequence number="0"> Sequqnce number (max: 50)

<pattern>0</pattern> Track 0 will play pattern 0...
<pattern>1</pattern> ...and track 1 will play pattern 1

</sequence>
<sequence number="1">

<pattern>1</pattern> Track 0 will play pattern 1...
<pattern>0</pattern> ...and track 1 will play pattern 0

</sequence>

Transitions describe the chance/probability that the style will move to the
next next sequence (and the tracks will play those patterns).

<!--For this sequence, what are the probabilities of moving to another
sequence-->

<transition sequence="0">
<chance>80</chance> 80% chance that we will stay in sequence 0
<chance>20</chance> 20% chance that we will move to sequence 1

</transition>
<transition sequence="1">

<chance>50</chance> 50% chance that we will move to sequence 0
<chance>50</chance> 50% chance that we will stay in sequence 1

</transition>

</style>

Next is as example of a Free style:

<style>
<name>SimpleFree</name>
<synced>0</synced> Are tracks synchronized to each other (1) or not

(0)
<tempo>5</tempo>
<tracks>3</tracks>
<sequences>3</sequences> Currently not used for Free styles

<track>
<number>0</number>
<channel>0</channel>
<type>4</type>
<program>4</program>
<bank>8</bank>
<volume>100</volume>
<pan>100</pan>
<reverb>80</reverb>
<chorus>20</chorus>
<velocity>100</velocity>
<patterncount>2</patterncount>
<pattern number="0">

<note>36,2</note>
<note>41,4</note>
<note>43,2</note>
<note>41,4</note>
<note>36,4</note>
<note>41,4</note>
<note>43,4</note>

</pattern>
<pattern number="1">

<note>48,2</note>

<note>41,4</note>
<note>43,2</note>
<note>48,4</note>
<note>43,4</note>
<note>41,4</note>
<note>43,4</note>

</pattern>
</track>

<track>
<number>1</number>
<channel>6</channel>
<type>2</type>
<program>14</program>
<bank>11</bank>
<volume>40</volume>
<pan>64</pan>
<reverb>60</reverb>
<chorus>10</chorus>
<velocity>100</velocity>
<patterncount>2</patterncount>
<pattern number="0">

<note>67,0</note>
<note>60,2</note>
<note>62,2</note>
<note>65,2</note>

</pattern>
<pattern number="1">

<note>59,0</note>
<note>55,2</note>
<note>57,2</note>
<note>60,2</note>

</pattern>
</track>

<track>
<number>2</number>
<channel>7</channel>
<type>4</type>
<program>89</program>
<bank>0</bank>
<volume>100</volume>
<pan>25</pan>
<reverb>100</reverb>
<chorus>40</chorus>
<velocity>100</velocity>
<patterncount>2</patterncount>
<pattern number="0">

<note>36,1*3</note>
<note>38,1*7</note>

</pattern>
<pattern number="1">

<note>48,1*4</note>
<note>50,1*5</note>

</pattern>

</track>

From here, the info given is special to Free styles.
We describe, for each track, what the chances are for moving to another
pattern.

<sequence number="0"> track number 0
<pattern number="0"> If we are just finished with pattern 0...

<chance>60</chance> ...there is a 60% chance of staying in
pattern 0

<chance>40</chance> ...and a 40% chance for this track to
move to pattern 1

</pattern>
<pattern number="1"> If we are just finished with pattern 1...

<chance>80</chance> ...there is a 80% chance of moving to
pattern 0

<chance>20</chance> ...and a 20% chance for this track to
stay in pattern 1

</pattern>
</sequence>

<sequence number="1"> track number 1
<pattern number="0">

<chance>70</chance>
<chance>30</chance>

</pattern>
<pattern number="1">

<chance>30</chance>
<chance>70</chance>

</pattern>
</sequence>

<sequence number="2"> track number 2
<pattern number="0">

<chance>50</chance>
<chance>50</chance>

</pattern>
<pattern number="1">

<chance>80</chance>
<chance>20</chance>

</pattern>
</sequence>

</style>

Appendix. Fluidsynth configuration
/home/pi/oscalgopi/fluidconfig.txt

rev_setroomsize 0.8
rev_setwidth 5
rev_setlevel 0.5
rev_setdamp 0.1
cho_set_depth 0.8
cho_set_level 0.5

/home/pi/oscalgopi/runfluid.sh

#!/bin/bash

if pgrep -x "fluidsynth" > /dev/null
then
echo fluidsynth already flowing
else
fluidsynth -si -a alsa -j -K 16 -L 1 -g 0.6 -o synth.reverb.active=1 -o
synth.chorus.active=1 -o synth.polyphony=32 -o synth.midi-bank-select=gs -o
audio.period-size=1024 -o audio.periods=2 -f fluidconfig.txt
/home/pi/oscalgopi/generaluser.sf2 &
fi

Appendix. General Midi drums
The numbers listed correspond to the MIDI note number for that drum sound.

Drum sounds added in General MIDI Level 2 are tagged with (GM2).

27 High Q (GM2)
28 Slap (GM2)
29 Scratch Push (GM2)
30 Scratch Pull (GM2)
31 Sticks (GM2)
32 Square Click (GM2)
33 Metronome Click (GM2)
34 Metronome Bell (GM2)
35 Bass Drum 2
36 Bass Drum 1
37 Side Stick
38 Snare Drum 1
39 Hand Clap
40 Snare Drum 2
41 Low Tom 2
42 Closed Hi-hat
43 Low Tom 1
44 Pedal Hi-hat
45 Mid Tom 2
46 Open Hi-hat
47 Mid Tom 1

48 High Tom 2
49 Crash Cymbal 1
50 High Tom 1
51 Ride Cymbal 1
52 Chinese Cymbal
53 Ride Bell
54 Tambourine
55 Splash Cymbal
56 Cowbell
57 Crash Cymbal 2
58 Vibra Slap
59 Ride Cymbal 2
60 High Bongo
61 Low Bongo
62 Mute High Conga
63 Open High Conga
64 Low Conga
65 High Timbale
66 Low Timbale
67 High Agogo
68 Low Agogo

69 Cabasa
70 Maracas
71 Short Whistle
72 Long Whistle
73 Short Guiro
74 Long Guiro
75 Claves
76 High Wood Block
77 Low Wood Block
78 Mute Cuica
79 Open Cuica
80 Mute Triangle
81 Open Triangle
82 Shaker (GM2)
83 Jingle Bell (GM2)
84 Belltree (GM2)
85 Castanets (GM2)
86 Mute Surdo (GM2)
87 Open Surdo (GM2)

Appendix. GeneralUser patches
SF2 - Generaluser.sf2 (bank-program)

000-000 Stereo Grand
000-001 Bright Grand
000-002 Electric Grand
000-003 Honky-Tonk
000-004 Tine Electric Piano
000-005 FM Electric Piano
000-006 Harpsichord
000-007 Clavinet
000-008 Celeste
000-009 Glockenspiel
000-010 Music Box
000-011 Vibraphone
000-012 Marimba
000-013 Xylophone
000-014 Tubular Bells
000-015 Dulcimer
000-016 Tonewheel Organ
000-017 Percussive Organ
000-018 Rock Organ
000-019 Pipe Organ
000-020 Reed Organ
000-021 Accordian
000-022 Harmonica
000-023 Bandoneon
000-024 Nylon Guitar
000-025 Steel Guitar
000-026 Jazz Guitar
000-027 Clean Guitar
000-028 Muted Guitar
000-029 Overdrive Guitar
000-030 Distortion Guitar
000-031 Guitar Harmonics
000-032 Acoustic Bass
000-033 Finger Bass
000-034 Pick Bass
000-035 Fretless Bass
000-036 Slap Bass 1
000-037 Slap Bass 2
000-038 Synth Bass 1
000-039 Synth Bass 2
000-040 Violin
000-041 Viola
000-042 Cello
000-043 Double Bass
000-044 Stereo Strings Trem
000-045 Pizzicato Strings
000-046 Orchestral Harp
000-047 Timpani
000-048 Stereo Strings Fast
000-049 Stereo Strings Slow
000-050 Synth Strings 1
000-051 Synth Strings 2
000-052 Concert Choir
000-053 Voice Oohs
000-054 Synth Voice
000-055 Orchestra Hit
000-056 Trumpet

000-057 Trombone
000-058 Tuba
000-059 Muted Trumpet
000-060 French Horns
000-061 Brass Section
000-062 Synth Brass 1
000-063 Synth Brass 2
000-064 Soprano Sax
000-065 Alto Sax
000-066 Tenor Sax
000-067 Baritone Sax
000-068 Oboe
000-069 English Horn
000-070 Bassoon
000-071 Clarinet
000-072 Piccolo
000-073 Flute
000-074 Recorder
000-075 Pan Flute
000-076 Bottle Blow
000-077 Shakuhachi
000-078 Irish Tin Whistle
000-079 Ocarina
000-080 Square Lead
000-081 Saw Lead
000-082 Synth Calliope
000-083 Chiffer Lead
000-084 Charang
000-085 Solo Vox
000-086 5th Saw Wave
000-087 Bass & Lead
000-088 Fantasia
000-089 Warm Pad
000-090 Polysynth
000-091 Space Voice
000-092 Bowed Glass
000-093 Metal Pad
000-094 Halo Pad
000-095 Sweep Pad
000-096 Ice Rain
000-097 Soundtrack
000-098 Crystal
000-099 Atmosphere
000-100 Brightness
000-101 Goblin
000-102 Echo Drops
000-103 Star Theme
000-104 Sitar
000-105 Banjo
000-106 Shamisen
000-107 Koto
000-108 Kalimba
000-109 Bagpipes
000-110 Fiddle
000-111 Shenai
000-112 Tinker Bell
000-113 Agogo

000-114 Steel Drums
000-115 Wood Block
000-116 Taiko Drum
000-117 Melodic Tom
000-118 Synth Drum
000-119 Reverse Cymbal
000-120 Fret Noise
000-121 Breath Noise
000-122 Seashore
000-123 Birds
000-124 Telephone 1
000-125 Helicopter
000-126 Applause
000-127 Gun Shot

001-038 Synth Bass 101
001-044 Mono Strings Trem
001-048 Mono Strings Fast
001-049 Mono Strings Slow
001-052 Concert Choir Mono
001-056 Trumpet 2
001-057 Trombone 2
001-059 Muted Trumpet 2
001-060 Solo French Horn
001-061 Brass Section Mono
001-080 Square Wave
001-081 Saw Wave
001-098 Synth Mallet
001-120 Cut Noise
001-121 Fl. Key Click
001-122 Rain
001-123 Dog
001-124 Telephone 2
001-125 Car-Engine
001-126 Laughing
001-127 Machine Gun

002-102 Echo Pan
002-120 String Slap
002-122 Thunder
002-123 Horse Gallop
002-124 Door Creaking
002-125 Car-Stop
002-126 Scream
002-127 Lasergun

003-122 Howling Winds
003-123 Bird 2
003-124 Door
003-125 Car-Pass
003-126 Punch
003-127 Explosion

004-122 Stream
004-123 Scratch
004-125 Car-Crash
004-126 Heart Beat

005-122 Bubbles
005-124 Windchime
005-125 Siren
005-126 Footsteps

006-125 Train

007-125 Jet Plane

008-004 Chorused Tine EP
008-005 Chorused FM EP
008-006 Coupled Harpsichord
008-014 Church Bells
008-016 Detuned Tnwl. Organ
008-017 Detuned Perc. Organ
008-019 Pipe Organ 2
008-021 Italian Accordian
008-024 Ukulele
008-025 12-String Guitar
008-026 Hawaiian Guitar
008-027 Chorused Clean Gt.
008-028 Funk Guitar
008-030 Feedback Guitar
008-031 Guitar Feedback
008-038 Synth Bass 3
008-039 Synth Bass 4
008-048 Orchestra Pad
008-050 Synth Strings 3
008-061 Brass Section 2
008-062 Synth Brass 3
008-063 Synth Brass 4
008-080 Sine Wave
008-081 Doctor Solo
008-107 Taisho Koto
008-115 Castanets
008-116 Concert Bass Drum
008-117 Melodic Tom 2

008-118 808 Tom
008-125 Starship
009-014 Carillon
009-125 Burst Noise

011-000 Piano & Str.-Fade
011-001 Piano & Str.-Sus
011-004 Tine & FM EPs
011-005 Piano & FM EP
011-008 Tinkling Bells
011-014 Bell Tower
011-038 Techno Bass
011-039 Pulse Bass
011-049 Stereo Strings Velo
011-050 Synth Strings 4
011-051 Synth Strings 5
011-061 Brass Section 3
011-078 Whistlin'
011-081 Sawtooth Stab
011-087 Doctor's Solo
011-088 Harpsi Pad
011-089 Solar Wind
011-096 Mystery Pad
011-098 Synth Chime
011-100 Bright Saw Stack
011-119 Cymbal Crash
011-121 Filter Snap (KW tjoff)
011-127 Interference
012-000 Bell Piano
012-004 Bell Tine EP
012-010 Christmas Bells
012-027 Clean Guitar 2
012-038 Mean Saw Bass
012-048 Full Orchestra
012-049 Mono Strings Velo
012-080 Square Lead 2
012-081 Saw Lead 2
012-088 Fantasia 2

012-089 Solar Wind 2
012-119 Tambourine
012-122 White Noise Wave
012-127 Shooting Star
013-048 Woodwind Choir
013-080 Square Lead 3
013-081 Saw Lead 3
013-088 Night Vision
016-025 Mandolin

120-000 Standard Drums
120-001 Standard 2 Drums
120-008 Room Drums
120-016 Power Drums
120-024 Electronic Drums
120-025 808/909 Drums
120-026 Dance Drums
120-032 Jazz Drums
120-040 Brush Drums
120-048 Orchestral Perc.
120-056 SFX Kit

128-000 Standard
128-001 Standard 2
128-008 Room
128-016 Power
128-024 Electronic
128-025 808/909
128-026 Dance
128-032 Jazz
128-040 Brush
128-048 Orchestral
128-056 SFX

	Introduction
	How to use it
	2. Connect to the Raspberry Pi
	3. Start the Engine
	4. Select a style
	5. Change the degree of change (permutation).
	6. Change the tempo
	7. Shut down the Raspberry Pi

	How to build it
	Equipment
	Prepare the Raspberry Pi
	Install Raspberry Pi OS
	Enable SSH
	Enable WIFI
	Boot the Raspberry Pi

	Configure the Raspberry Pi
	SSH communication
	Additional settings

	Prepare files
	Install Fluidsynth, RtMidi and TinyXML2
	Compile and build the C++ code
	Building oap - the engine
	Building oapsignal - the signaller

	Install the web server
	Copy programs and files and fix the communication
	Set up Fluidsynth
	Test

	Appendix. About the code
	Appendix. Styles
	Appendix. Fluidsynth configuration
	Appendix. General Midi drums
	Appendix. GeneralUser patches

