
Friprogramvarusyndikatet OscPocketO – OPO

Version: 2023-12-13

1

Friprogramvarusyndikatet OscPocketO – OPO

Introduction
Welcome to the OscPocketO - Arduino Pocket Synth!

The OsckPocketO (OPO) is a family of affordable and portable sound generators running
open source software!

All software is running on the Arduino microcontroller, including sound generation thanks to
the awesome Mozzi library1!

This guide assumes you know how to connect, edit and send sketches to an Arduino. If
not, check out the documentation2.

It also assumes that you have installed the Arduino IDE (see “Install the Arduino Desktop
IDE”) and the following libraries3:

• Liquid Crystal

• Mozzi

OPO is currently two different machines: OPO Synth and OPO Drums. They both use the
same hardware, so if you build this machine you can change how it operates by uploading
either of sketches!

You can download this instruction and all the code you need from
<https://oscillator.se/arduino/#oscpocketo>.

You can find a lot of great resources for learning to work with the Arduino in their
documentation4.

Synth features
The OPO Synth features:

• a 16 step sequencer with multiple patterns

• adjustable tempo and gate length

• four selectable waveforms

• settings for attack and decay

• a low pass filter with modulation and cutoff and resonance settings

1 https://sensorium.github.io/Mozzi/

2 https://support.arduino.cc/hc/en-us/articles/4733418441116-Upload-a-sketch-in-Arduino-
IDE

3 https://docs.arduino.cc/software/ide-v1/tutorials/installing-libraries

4 https://docs.arduino.cc/learn

2

https://sensorium.github.io/Mozzi/
https://docs.arduino.cc/learn
https://oscillator.se/arduino/#oscpocketo
https://docs.arduino.cc/software/ide-v1/tutorials/installing-libraries
https://support.arduino.cc/hc/en-us/articles/4733418441116-Upload-a-sketch-in-Arduino-IDE
https://support.arduino.cc/hc/en-us/articles/4733418441116-Upload-a-sketch-in-Arduino-IDE

Friprogramvarusyndikatet OscPocketO – OPO

• an optional second detunable oscillator

• the ability to save and load synth settings and patterns to EEPROM (a memory
space that does not disappear when the Arduino is powered off)

• functions to create patterns

• a play mode for solo play

Drums features
The OPO Drums features:

• virtual analog generated sounds: Kick, Snare, Hihat, Clap, Crash, Tom

• a 16 step sequencer

• multiple patterns

• adjustable tempo

• many settings for tweaking the drum sounds

• the ability to save and load patterns to EEPROM

• functions to create patterns

• a play mode for solo play

3

Friprogramvarusyndikatet OscPocketO – OPO

Table of Contents
Introduction..2

Synth features..2
Drums features...3

How to use it...5
Synth..5
Drums...7
Syncing several OPO machines...9

1. Setup..9
2. Play..10

How to build it..11
Contents...11
Equipment..14
Hardware..16

1. LCD Keypad shield...16
2. Audio jack...18
Soldering of wires...18
3. Optional: Sync in and out and Sync Ground...19
4. Put it in a box..20

Software...21
Install and configure the Mozzi library...21
Install the OPO sketch...21

Expansions...22
Control the filter with potentiometers...22

Optional: Building without the LCD Keypad shield...23
Problem solving...25

The screen...25
The buttons..25

4

Friprogramvarusyndikatet OscPocketO – OPO

How to use it

Figur 1: Overview front

The OPO is controlled by switching to different modes using the SELECT button.

Use the UP button to increase a value, DOWN to decrease a value, and LEFT and RIGHT
to move the cursor.

Info:The Arduino's built in LED blinks every time the OPO plays a note.

Warning: Beware that connecting the OPO directly to your home stereo might overload it!
Use headphones or a mixer.

Info: If the LCD display messes up press repeatedly so you pass the Tools menu - the
LCD will be reset.

Synth
The OPO synth can play patterns you enter, and it has the the following modes of
operation.

Modes:

5

Friprogramvarusyndikatet OscPocketO – OPO

START. Starts and stops the sequencer.

SYNC. Sets the sync mode. NONE = no sync signals are received or transmitted. INT =
internal, the built in clock of the OPO is used and sync signals are sent (Conductor mode).
EXT = external, the OPO sequencer is controlled by an external signal, but sync signals
are still sent (Player mode). EXT24 = as EXT, but the OPO is expecting 24ppq (note:
works poorly when tempo > 140 bpm).

PATTERN. Select the current pattern.

EDIT. Edit the current pattern. Notes are stored as MIDI values in 1 bar (16 x 1/16th
notes).

STATE. Edit the state of the notes: X = on, O = off.

TEMPO. Set tempo of the sequencer.

GATE. Set gate of notes played. Gate is expressed as percent of 1/16th.

Figur 2: Illustrating Attack, Gate and Release

SHIFT. Transpose (UP/DOWN) and Shift the sequence (LEFT/RIGHT).

WAVEFORM. Set the waveform of the (first) oscillator: SIN (sine), TRI (triangle), SAW
(sawtooth) and SQUARE (square).

ATTACK. Set the Attack time in ms.

RELEASE. Set the Release time in ms.

FILTER MODE. The OPO has a low pass filter. The Cutoff can be modulated:

• FIXED. No modulation, use the Cutoff and Resonance values.

• RANDOM. Random modulation from 0 up to the Cutoff value.

• SLOW. Modulation over approximately 4 bars from 0 to 255. Changes the Cutoff
value.

6

Friprogramvarusyndikatet OscPocketO – OPO

• FAST. Modulation over approximately 1 bar from 0 to 255. Changes the Cutoff
value.

• POTS. The cutoff and resonance is controlled by two potentiometers (see section
“Expansions” on page 22 in this document).

CUTOFF. Set the Cutoff frequency of the filter (as a number from 0 to 255).

RESONANCE. Set the Resonance of the filter (as a number from 0 to 255).

WAVEFORM2. Activate and set the waveform of the second oscillator: NONE, SIN (sine),
TRI (triangle), SAW (sawtooth) and SQUARE (square).

DETUNE2. Detune the second oscillator relative to the first. The value is in Hz and is
added to the frequency of the first oscillator.

PLAY. Keyboard mode. The sequencer is stopped (if running) and the 4 first notes of the
current pattern are mapped to LEFT, UP, DOWN and RIGHT for solo play.

TOOLS. Small utility functions. Activate with UP.

• S. Save synthesizer settings and patterns to EEPROM so they can be recalled after
power off.

• L. Load synthesizer settings and patterns from EEPROM.

• R. Create Random pattern.

• B. Create a Bassline pattern based on the current note.

• C. Copy current pattern to next pattern position.

Drums
The OPO Drums can play 5 simultaneous sounds, all created by virtual analog synths
thanks to the Mozzi library: Kick, Snare, Hihat, Clap and Crash.

Modes:

START. Starts and stops the sequencer.

SYNC. Sets the sync mode. NONE = no sync signals are received or transmitted. INT =
internal, the built in clock of the OPO is used and sync signals are sent (Conductor mode).
EXT = external, the OPO sequencer is controlled by an external signal, but sync signals
are still sent (Player mode). EXT24 = as EXT, but the OPO is expecting 24ppq (note:
works poorly when tempo > 140 bpm).

PATTERN. Select the current pattern.

EDIT. Edit the current pattern. Notes values are constructed by adding values that
corresponds to different sounds:

• Kick = 1

7

Friprogramvarusyndikatet OscPocketO – OPO

• Snare = 2

• Hihat = 4

• Clap = 8

• Crash = 16

• Tom = 32

An example: A value of 17 means that this step will play Kick (1) and Crash (16), 1 + 16 =
17.

TEMPO. Set tempo of the sequencer.

EDIT KICK. Set frequency of kick, release time and slope (how quickly the sound drops in
frequency) where larger value = quicker drop.

EDIT SNARE. Set frequency of snare, release time and slope (how quickly the sound
drops in frequency) where larger value = quicker drop.

EDIT HIHAT. Set frequency in some interesting stepped values and release time.

EDIT CLAP. Set release time.

EDIT CRASH. Set release time.

EDIT TOM. Set frequency of tom, release time and slope (how quickly the sound drops in
frequency) where larger value = quicker drop.

PLAY. Solo play mode. LEFT = Kick, UP = Snare, DOWN = Tom and RIGHT = Crash.

TOOLS. Small utility functions. Activate with UP.

• S. Save patterns to EEPROM so they can be recalled after power off.

• L. Load synthesizer settings and patterns from EEPROM.

• R. Create Random pattern.

• B. Create a repeating pattern based on the current note.

• C. Copy current pattern to next pattern position.

8

Friprogramvarusyndikatet OscPocketO – OPO

Syncing several OPO machines

Figur 3: Overview connections for syncing several OPO machines

One OPO has to be the Conductor. This is the machine that sends synchronization data to
the other OPOs called Players.

1. Setup

Conductor. Start: Stop. Sync: Internal.

Player(s). Start: Stop. Sync: External. Start: Play. (Order is important.)

Info: Connect SYNC OUT from Conductor to SYNC IN of first Player. Connect GND
between Conductor and Player.

If you have several Players connect SYNC OUT from the first Player to SYNC IN on the
second Player. Repeat for each Player. Also connect GND between all SYNCed OPO
machines.

9

Friprogramvarusyndikatet OscPocketO – OPO

2. Play

Conductor. Start: Play.

You can tweak sounds and switch patterns on all OPO machines. You change tempo
(only) on the Conductor.

10

Friprogramvarusyndikatet OscPocketO – OPO

How to build it

Contents

• Arduino Uno R3 (an extra pin list
might be included, this is not used in
this project)

• a USB cable

• LCD Keypad shield

• Audio/headphone jack (3.5 mm
female)

• 2 x potentiometers

• 2 x female – male wires (colors and
length can vary)

• 1 x male – male wire (colors and
length can vary)

• 1 x red wire 12 cm

• 2 x black wire 12 cm

• 1 x wire in another color (nor red nor
black, let us call it “colored”)

You connect different things to the Arduino by connecting them to “pins” on the Arduino.

Read more about the features of the Arduino here: <https://docs.arduino.cc/tutorials/uno-
rev3/intro-to-board>

Info: Overview of connection (the result after following the steps in this manual, don’t worry
if you at this stage don’t understand everything):

11

Figur 4: Contents of package

https://docs.arduino.cc/tutorials/uno-rev3/intro-to-board
https://docs.arduino.cc/tutorials/uno-rev3/intro-to-board

Friprogramvarusyndikatet OscPocketO – OPO

Figur 5: Schematic of connections and buttons

Figur 6: Cables connected to pins according to schematic
(not SYNC GND)

12

Friprogramvarusyndikatet OscPocketO – OPO

13

Friprogramvarusyndikatet OscPocketO – OPO

Equipment
• a computer running Arduino IDE

• 1 pair of wire cutters

• 1 pair of flat-pointy pliers

• equipment for soldering

◦ Soldering iron

◦ Solder

• headphones, mixer or a computer with audio in. See
this tutorial for ideas on how to listen:
<https://sensorium.github.io/Mozzi/learn/introductory-
tutorial/>

• optional: 1 x power adapter for the Arduino (or battery
+ battery holder) so the OPO can be used without
being connected to a computer

And the components:

• 1 x Arduino Uno

• 1 x LCD Keypad shield

Figur 8: LCD Keypad shield

14

Figur 7: Examples of flat-
pointy pliers

https://sensorium.github.io/Mozzi/learn/introductory-tutorial/
https://sensorium.github.io/Mozzi/learn/introductory-tutorial/

Friprogramvarusyndikatet OscPocketO – OPO

• audio/headphone jack

• wires

• for syncing:

◦ 3 x female - male Arduino/electronics patch cables

◦ 1 x female - female patch cable

15

Friprogramvarusyndikatet OscPocketO – OPO

Hardware
We are going to:

1. attach the LCD Keypad shield

2. attach the Audio jack to be able to hear our synth

3. optionally attach the potentiometers to control the synth

1. LCD Keypad shield

Info: Before attaching the LCD Keypad shield we need to make sure that it does not
connect to pin 10 (D10) on the Arduino. Explanation: D10 is normally used to control the
backlight (brightness) on the LCD. But we are going to use D10 for audio.

To make this work, you have to bend the pin outwards on the shield that goes into D10
(see graphics) on the Arduino. Bend it 90 degrees. Some of the pins might be bent a bit
already. Make sure you straighten them out before attaching the LCD Keypad shield. It is
easy if you use the flat tweezers.

This image from the back of the Arduino (after attaching the LCD Keypad shield) shows
the bent pin of the shield (1). You can also see the audio connection from the Arduino (2)
which we are going to fix in the next step.

16

Friprogramvarusyndikatet OscPocketO – OPO

Figur 9: Back of Arduino with indicators (1) for bent pin, and (2)
for pin D10

Now attach the LCD Keypad shield to the Arduino. It is easier if you first place the Arduino
on a firm surface (we are later going to do some soldering, make sure that surface can
handle a few burn marks.) Make sure all the pins of the shield, on both sides, aligns with
the ports of the Arduino before pressing it firmly down. This is an important step – really
make sure that all the pins of the shield inserts into the correct connections of the Arduino!

The LCD Keypad shield with the LCD and the buttons are now connected to the Arduino:

• LCD: D4, D5, D6, D7, D8, D9

• Buttons: A0

Info: The RST (Reset) button resets (restarts) the Arduino but it is not used by this project.

If you want to, you can test the connectivity of the Arduino and the LCD Keypad shield by
uploading the code_test_lcd sketch. The screen should display “Hello, world!” and a
counter on the second row.

You can also try the “code_test_analog_buttons” example. The Serial Monitor of the
Arduino IDE <https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-serial-monitor>
should display different numbers depending on which button you press on the LCD
Keypad shield.

17

https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-serial-monitor

Friprogramvarusyndikatet OscPocketO – OPO

See the Problem Solving section if you have any problems.

Don’t forget to disconnect the Arduino from your computer before continuing.

2. Audio jack

The Audio jack is connected to D10 and GND on the Arduino.

Explanation: The sound is created by the Arduino running the Mozzi library
<https://sensorium.github.io/Mozzi/>. The Mozzi library normally works with pin D9, but as
this connection is used by the LCD Keypad shield, we have to make some configuration
changes to the Mozzi library. This is described in the Software section later on, and only
involves changing a few lines in the Mozzi configuration code.

Soldering of wires

1. Solder the colored wire (the wire that is neither red or black) to both left (tip) and
right (ring) on the Audio jack pins (socket). Use a pair of cutters to remove 1 cm at
both ends of the plastic cover. You can pre-lead the ends by applying some lead by
the hot tip of the soldering iron andapply it to the exposed cable end to get a better
connection.

2. Solder a black wire to the sleeve pin (the PLUG graphic is just shown for
information):

Figur 10:
Schematic of
Audio jack

18

https://sensorium.github.io/Mozzi/

Friprogramvarusyndikatet OscPocketO – OPO

1. Solder the colored wire to the D10 of the Arduino. As we already have attached the
shield use the D10 solder joint on the back of the Arduino.

2. Solder the black wire to Arduino GND which can be found on top of the shield (see
picture).

Figur 11: Schematic with indicators of connections to
solder

You can now try to download the OscPocketO code to the Arduino. Connect the audio out
to a headphone or a speaker. Warning: Remember that the signal level of the OPO might
be a bit high (hot) so don’t plug it into your expensive stereo amplifier. Use a cheap active
speaker or a set of headphones that you can afford to lose.

Now continue with the Software section on page 21.

3. Optional: Sync in and out and Sync Ground

If you have two or more units you might want to synchronize them to play in the same
tempo, for example one OPO synth and one OPO drum machine.

For this to work they have to share the same ground (GND) and be connected SYNC OUT
to SYNC IN.

Prepare a SYNC signal cable. For two machines an ordinary male-male patch cable is
fine. Connect it to SYNC OUT pin D12 on the OPO sending the synchronizing signal, and
SYNC IN pin D11 on the OPO receiving the sync signal.

If you have three OPO machines:

19

Friprogramvarusyndikatet OscPocketO – OPO

• Cut the female-male patch cable in two and solder the oposite end of the female
part to D11 (SYNC IN) and the male to D12 (SYNC OUT).

• Cut the female-female patch cable in two and solder one half to GND. It is easiest
to select the 2nd GND (where an imaginary "D14" would be).

4. Put it in a box

Info: For durability you should put the OPO into a box and fasten the Audio jack.

20

Friprogramvarusyndikatet OscPocketO – OPO

Software
Connect your Arduino to your computer running the Arduino IDE.

Install and configure the Mozzi library

Download and install Mozzi using the instructions on the Mozzi site:
<https://sensorium.github.io/Mozzi/download/>

If you need, read more about installing Arduino libraries:
<https://www.arduino.cc/en/Guide/Libraries>

Info: By default Mozzi outputs to D9, but as this pin is used by the LCD Keypad Shield, we
have to change this to D10.

In the Mozzi libraries folder <https://support.arduino.cc/hc/en-us/articles/4415103213714-
Find-sketches-libraries-board-cores-and-other-files-on-your-computer>, find and open
AudioConfigStandardPlus.h in a text editor.

Change “A” to “B” and “B” to “A” on the following four lines so they look like this:

// Used internally. If there was a channel 2, it would be OCR1B.
#define AUDIO_CHANNEL_1_OUTPUT_REGISTER OCR1B
#define AUDIO_CHANNEL_2_OUTPUT_REGISTER OCR1A

(...)

#define AUDIO_CHANNEL_1_PIN TIMER1_B_PIN // defined in
TimerOne/config/known_16bit_timers.h
#define AUDIO_CHANNEL_2_PIN TIMER1_A_PIN

Install the OPO sketch

Download the OPO from <https://oscillator.se/arduino/> (which you probably already have
done as you are reading this manual).

Chose which OPO you would like to run: Synth or Drums. For Synth open the
code_synth/code_synth.ino or for Drums open code_drums/code_drums.ino in the Arduino
IDE and upload either to your Arduino.

21

https://www.oscillator.se/arduino/#oscpocketo
https://support.arduino.cc/hc/en-us/articles/4415103213714-Find-sketches-libraries-board-cores-and-other-files-on-your-computer
https://support.arduino.cc/hc/en-us/articles/4415103213714-Find-sketches-libraries-board-cores-and-other-files-on-your-computer
https://www.arduino.cc/en/Guide/Libraries
https://sensorium.github.io/Mozzi/download/

Friprogramvarusyndikatet OscPocketO – OPO

Expansions

Control the filter with potentiometers

Take two potentiometers. We use two 10k Ohms.

Connect them according to the diagram (A1 and A2).

Figur 12: Connecting the optional potentiometers for
Cutoff frequency and Resonance

Info: Make sure you set “Filter Mode” to “POTS”.

22

Friprogramvarusyndikatet OscPocketO – OPO

Optional: Building without the LCD Keypad shield
If you don't have a LCD Keypad shield you can build it anyway by replacing the LCD
Keypad shield with a DYI keypad or:

• 1 LCD Screen with 16x2 characters (compatible with Hitachi HD44780 driver)

• 5 x pushbuttons (momentary),

• 5 x resistors for buttons (2kΩ or something similar, they must all be of the same
value)

Connect the buttons like this using 2k Ω resistors (or other resistors all of the same value):

The buttons are read using one analog in pin (A0) on the Arduino to save digital pins. As
resistor values can vary, it is a good idea to measure the voltage when pressing the
different buttons and adjust the corresponding values in the UIHandle() function:

 // is any button pressed?
 if (aUIButtonValue < 900)
 {
 // check which one
 if (aUIButtonValue < 50)
 {
 aUIButton = UI_BUTTON_RIGHT;
 } else if (aUIButtonValue < 150) {
 aUIButton = UI_BUTTON_UP;
 } else if (aUIButtonValue < 300) {
 aUIButton = UI_BUTTON_DOWN;
 } else if (aUIButtonValue < 500) {
 aUIButton = UI_BUTTON_LEFT;
 } else if (aUIButtonValue < 700) {
 aUIButton = UI_BUTTON_SELECT;
 } else {
 aUIButton = UI_BUTTON_NONE;
 }

23

Friprogramvarusyndikatet OscPocketO – OPO

Test the connections using the test code: code_test_analog_buttons.ino. See the section
Problem solving: The Buttons at the end of the manual if you need help.

Links

• http://tronixstuff.com/2011/01/11/tutorial-using-analog-input-for-multiple-buttons

Connect the LCD to the Arduino. The code that defines which pins to use can be found at
the top:

// LCD
#define PIN_LCD_D4 4
#define PIN_LCD_D5 5
#define PIN_LCD_D6 6
#define PIN_LCD_D7 7
#define PIN_LCD_RS 8
#define PIN_LCD_EN 9

So, D4 on the LCD should go to digital 4 on the Arduino etc.

24

Friprogramvarusyndikatet OscPocketO – OPO

Problem solving

The screen

You can test the LCD screen using the sketch code_test_lcd.ino in the code_test folder. It
should display "hello, world!" and a ticking time on your screen.

If not you can try the following:

• There is a small blue "box" at the top left of the LCD Keypad shield. This is the
contrast control. There is a small screw on it. Try to turn it and see if it helps.

• If you still can't see anything try the advice in this video:
<https://www.youtube.com/watch?v=hsJOVG_5pMI>

The buttons

All buttons change a value on pin A0 of the Arduino. It could be that your model of LCD
Keypad shield gives different values than ours.

Upload the code_test_analog_buttons.ino from the code_test folder to your OPO.

In the Arduino IDE chose Tools > Serial Monitor. In that window you have a popup where
you can select speed. Select 9600.

The monitor should stream values all the time, that is the correct behavior, even if you
don't press a button.

Note down the values that appear when you press the different buttons (ignore RST reset
button as it just restarts your Arduino). The value fluctuates a bit, this is normal.

These values are detected in the code, in the function UIHandle(), which is near line 566 in
the code.

It works like this (excerpt from code line 572 onwards):

 aUIButtonValue = mozziAnalogRead(PIN_BUTTONS);

 // is any button pressed?
 if (aUIButtonValue < 900)
 {
 // check which one
 if (aUIButtonValue < 50)
 {
 aUIButton = UI_BUTTON_RIGHT;
 } else if (aUIButtonValue < 150) {
 aUIButton = UI_BUTTON_UP;
 } else if (aUIButtonValue < 300) {
 aUIButton = UI_BUTTON_DOWN;
 } else if (aUIButtonValue < 500) {
 aUIButton = UI_BUTTON_LEFT;
 } else if (aUIButtonValue < 700) {
 aUIButton = UI_BUTTON_SELECT;

25

https://www.youtube.com/watch?v=hsJOVG_5pMI

Friprogramvarusyndikatet OscPocketO – OPO

 } else {
 aUIButton = UI_BUTTON_NONE;
 }

First the code reads the value on pin A0. This puts a value from 0 to 1023 in the variable
aUIButtonValue. This value will be different depending on the pressed button.

If no button is pressed the value will be larger than 900, so we filter that out.

If the value is less than 50 it is the RIGHT button.

If the value is less than 150 it is the UP button.

If the value is less than 300 it is the DOWN button.

If the value is less than 500 it is the LEFT button.

If the value is less than 700 it is the SELECT button.

This means that the value, when you press the LEFT button, must be between 300 and
500.

Now, your shield could give different values to our LCD shield, so you might have to
change the values in the code.

26

	Introduction
	Synth features
	Drums features

	How to use it
	Synth
	Drums
	Syncing several OPO machines
	1. Setup
	2. Play

	How to build it
	Contents
	Equipment
	Hardware
	1. LCD Keypad shield
	2. Audio jack
	Soldering of wires
	3. Optional: Sync in and out and Sync Ground
	4. Put it in a box

	Software
	Install and configure the Mozzi library
	Install the OPO sketch

	Expansions
	Control the filter with potentiometers

	Optional: Building without the LCD Keypad shield
	Problem solving
	The screen
	The buttons

