
OscCVGateMod
3+3-channel CV/Gate modulator

Project: OscCVGateMod
Author: Staffan Melin, staffan.melin@oscillator.se
License: GNU General Public License v3.0
Version: 20200313
Project site: http://www.oscillator.se/arduino

Contents
Introduction..3
How to use it...4

Modulating CV..5
Modulating Gate..6

How to build it..7
Equipment..9
Potentiometers...10
DACs..11
Sockets...14
External clock in..15
Arduino connections..16

Code..17
Ideas for improvement..18

Introduction

The OscCVGateMod is a 3+3 channel digital/analog CV/Gate modulator based on an Arduino.

An experimental platform for manipulation of CV/Gate synthesizers.

It has 3 independent CV channels that operate from 0 to +5V to drive up to 3 analog synthesizers. It
also has 3 independent gate (clock) channels outputting 0 or +5V. It can be thought of as a kind of
programmable LFO.

The signals are controlled by software, using algorithms contained in different classes. These
classes can easily be expanded and changed, adding additional capabilities.

The algorithms can also be controlled using:

• one or more of 3 potentiometers

• an analog input

The analog input is by default used as a clock input, making it possible to synchronize the
algorithms to external devices.

The lack of display and editing capabilities means that major changes and configuration has to be
done in the Arduino IDE. To use the OscCVGateMod you have to have some knowledge in
programming the Arduino.

How to use it
To use the OscCVGateMod you must have some basic skills in Arduino and the Arduino IDE.

All modulation takes place in classes. There is one class for each type of modulation.

Every class has (at least) four methods:

• init() - initializes the modulation

• work() - called in the Arduino loop() to calculate the signal value

• getValue() / getGate() - get the current value of the modulation

• setValue() / setGate() - set the value of the modulation

In several classes the actual computation of the (new) modulation value is done in a calcValue()
function.

Modulating CV
The 3 CV modulating objects are created before the setup():

CVWanderer cv1;

CVTriangle cv2;

CVWanderer cv3;

They are initialized in setup():

cv1.init(false, 0, MAX_DAC, 1, 10, PIN_POT_1, PIN_POT_NONE); //
CVWanderer

cv2.init(false, 0, MAX_DAC, 2000, PIN_POT_2); // CVTriangle

cv3.init(false, 0, MAX_DAC, 1, 10, PIN_POT_NONE,
PIN_POT_NONE); // CVWanderer

where you can find examples on initialization of the different modulation classes.

The arguments are described at each class definition.

Modulating Gate
The 3 gate objects are created before the setup():

GateFixed gate1;

GateClock gate2;

GateRandom gate3;

They are initialized in setup():

gate1.init(false, true); // GateFixed

gate2.init(false, t16, 50, PIN_POT_NONE); // GateClock

gate3.init(false, t16*2, 50, PIN_POT_3); // GateRandom

where you can find examples on initialization of the different gate classes.

The arguments are described at each class definition.

How to build it

The are a lot of connections to be made, so I recommend the following order, testing each
component before moving on to the next.

System overview:

Equipment
• 1 x Arduino (I used an Arduino Nano, but an Uno R3 will also work)
• 3 x DAC MCP4725
• 6 x 3.5mm mono audio sockets (female)
• 3 x potentiometers (I used 10k Ohm)
• prototyping board/perf board
• connection wires
• enclosure

You also need the usual tools such as a soldering iron/station, multimeter etc. And at least one
analog synthesizer with CV/Gate connections.

If you use an Arduino Uno R3, you have to replace the connection to A7 (external gate in) with A3,
in both circuit and code.

Potentiometers
The three potentiometers are connected to GND and +5V on the Arduino. The middle pin is
connected to

• Pot 1 - Arduino A2

• Pot 2 - Arduino A1

• Pot 3 - Arduino A0

DACs
The OscCVGateMod is made to control analog synths based on the 1V/octave scheme. As the DAC
can output voltages from 0 up to what it is fed, in our case the +5V from the Arduino, we can
control 5 octaves. This means 5 octaves x 12 notes = 60 notes. If you want to transpose these 5
octaves you have to do it using the oscillator tuning on your synthesizer.

The Arduino controls the Digital to Analog Converters (DACs) using the I2C protocol. For this to
work the DAC boards must have unique addresses.

I used the common MCP4725 DAC. When you buy these they are usually set to a specific address,
with the option to increase the address by one by setting the A0 pin on the DAC board to HIGH. Do
not confuse this with the A0 pin of the Arduino.

You can find out which I2C address your DACs use by running the program i2c_scanner.ino (search
for it on the web).

In my case the two addresses that can be used are 0x62 and 0x63. As we want to control 3 channels
we do this by setting A0 to LOW on the DAC we want to use and HIGH on the rest. We then only
write to the 0x62 address. This is managed by the dacSelect() function in the code.

The A0 pin was not exposed on my DAC board to I had to solder a wire directly to the A0 leg of the
DAC chip.

Connect the DACs:

DAC pin Use Connects to

DAC #1

Out output CV 1 (tip)

GND not used

SCL I2C communication Arduino A5

SDA I2C communication Arduino A4

VCC +5V Arduino +5V

GND GND Arduino GND

DAC #2

Out output CV 2 (tip)

GND not used

SCL I2C communication Arduino A5

SDA I2C communication Arduino A4

VCC +5V Arduino +5V

GND GND Arduino GND

DAC #3

Out output CV 3 (tip)

GND not used

SCL I2C communication Arduino A5

SDA I2C communication Arduino A4

VCC +5V Arduino +5V

GND GND Arduino GND

Test each DAC connection using the test code: code_test_dac.ino.

I have read that you need to disable the pullup resistors on all but one DAC if you use more than
one, but I didn't do this (https://learn.sparkfun.com/tutorials/mcp4725-digital-to-analog-converter-
hookup-guide).

Links

• https://www.instructables.com/id/ADAFRUIT-MCP4725-FOUR-CHANNEL-SETUP/

Sockets
You need 6 x 3.5mm female mono sockets. I used stereo sockets and shorted the ring and the sleeve.

Connect the sockets:
• sleeve (+ring) - GND
• CV1 tip - DAC#1 out
• CV2 tip - DAC#2 out
• CV3 tip - DAC#3 out
• Gate 1 tip - D4
• Gate 2 tip - D3
• Gate 3 tip - D2

External clock in
I decided to connect the analog in line to a crocodile clip for freedom of connection. In the future I
might want to try to connect an analog sensor.

You can also use an 3.5mm socket.

I also decided to connect ground to a crocodile clip. In this way the two clips can connect to an
male audio/CV cable.

Arduino connections

Arduino
pin

Use Connects to

D2 Gate #3 Gate #3 socket tip

D3 Gate #2 Gate #2 socket tip

D4 Gate #1 Gate #1 socket tip

D8 CV #3 DAC select DAC #3 A0 pin

D9 CV #2 DAC select DAC #2 A0 pin

D10 CV #1 DAC select DAC #1 A0 pin

A0 Pot 3 Pot 3 middle pin

A1 Pot 2 Pot 2 middle pin

A2 Pot 1 Pot 1 middle pin

A3 use as Ext clock in on Arduino Uno

A4 DAC SDA SDA port of all 4 DACs

A5 DAC SCL SCL port of all 4 DACs

A7 Ext clock in Crocodile clip input

Code
The software makes use of libraries that you can install in the Arduino IDE:

#include <Wire.h>

#include <Adafruit_MCP4725.h>

If you want or need to know more about object oriented programming and the Arduino, this is a
good resource: http://paulmurraycbr.github.io/ArduinoTheOOWay.html.

http://paulmurraycbr.github.io/ArduinoTheOOWay.html

Ideas for improvement
• Add a display and input buttons so you can configure which algorithms work with the

different connections.

• Change the DACs so they can handle more than +5V, making the OscDigiSeq handle more
octaves.

• Use this as a hardware platform for exploring other ways of controlling analog synths: drone
firmware, art projects etc.

	Introduction
	How to use it
	Modulating CV
	Modulating Gate

	How to build it
	Equipment
	Potentiometers
	DACs
	Sockets
	External clock in
	Arduino connections

	Code
	Ideas for improvement

